50 research outputs found

    Construction industry 4.0 and sustainability: an enabling framework

    Get PDF
    Governments worldwide are taking actions to address the construction sector's sustainability concerns, including high carbon emissions, health and safety risks, low productivity, and increasing costs. Applying Industry 4.0 technologies to construction (also referred to as Construction 4.0) could address some of these concerns. However, current understanding about this is quite limited, with previous work being largely fragmented and limited both in terms of technologies as well as their interrelationships with the triple bottom line of sustainability perspectives. The focus of this article is therefore on addressing these gaps by proposing a comprehensive multi-dimensional Construction 4.0 sustainability framework that identifies and categorizes the key Construction 4.0 technologies and their positive and negative impacts on environmental, economic, and social sustainability, and then establishing its applicability/usefulness through an empirical, multimethodology case study assessment of the UAE's construction sector. The findings indicate Construction 4.0’s positive impacts on environmental and economic sustainability that far outweigh its negative effects, although these impacts are comparable with regards to social sustainability. On Construction 4.0 technologies itself, their application was found to be nonuniform with greater application seen for building information modeling and automation vis-à-vis others such as cyber-physical systems and smart materials, with significant growth expected in the future for blockchain- and three-dimensional-printing-related technologies. The proposed novel framework could enable the development of policy interventions and support mechanisms to increase Construction 4.0 deployment while addressing its negative sustainability-related impacts. The framework also has the potential to be adapted and applied to other country and sectoral contexts

    Construction Industry 4.0 and Sustainability: An Enabling Framework

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordGovernments worldwide are taking actions to address the construction sector's sustainability concerns, including high carbon emissions, health and safety risks, low productivity, and increasing costs. Applying Industry 4.0 technologies to construction (also referred to as Construction 4.0) could address some of these concerns. However, current understanding about this is quite limited, with previous work being largely fragmented and limited both in terms of technologies as well as their interrelationships with the triple bottom line of sustainability perspectives. The focus of this study is therefore on addressing these gaps by i) proposing a comprehensive multidimensional Construction 4.0 sustainability framework that identifies and categorizes the key Construction 4.0 technologies Manghat productivity has remained nearly flat for the last several decades, and part of the reason has been its conservative approach to project design and delivery (Reinhardt et al., 2020). This slow pace of innovation matters because of the industry’s significant negative economic (e.g., low-profit margins, significant project delays, and budget overruns), environmental (e.g., high resource, energy, and water consumption and waste generation; accounts for 30% of the world's greenhouse gas emissions as per Craveiro et al., 2019) and social (e.g., high worker deaths/injuries, poor working conditions) impacts (Balasubramanian and Shukla, 2017a; Calvetti, 2020a; Turner et al., 2020; You and Feng, 2020). and their positive and negative impacts on environmental, economic, and social sustainability, and then ii) establishing its applicability/usefulness through an empirical, multi-methodology case study assessment of the UAE’s construction sector. The findings indicate Construction 4.0’s positive impacts on environmental and economic sustainability far outweigh its negative effects, though these impacts are comparable with regards to social sustainability. On Construction 4.0 technologies itself, their application was found to be non-uniform, with greater application seen for building information modeling and automation vis-à-vis others such as cyber-physical systems and smart materials, with significant growth expected in the future for blockchain- and 3D-printing-related technologies. The proposed novel framework could enable the development of policy interventions and support mechanisms to increase Construction 4.0 deployment while addressing its negative sustainability-related impacts. The framework also has the potential to be adapted and applied to other country and sectoral context

    The effect of obesity on electrocardiographic detection of hypertensive left ventricular hypertrophy:Recalibration against cardiac magnetic resonance

    Get PDF
    Electrocardiograph (ECG) criteria for left ventricular hypertrophy (LVH) are a widely used clinical tool. We recalibrated six ECG criteria for LVH against gold-standard cardiac magnetic resonance (CMR) and assessed the impact of obesity. One hundred and fifty consecutive tertiary hypertension clinic referrals for CMR (1.5 T) were reviewed. Patients with cardiac pathology potentially confounding hypertensive LVH were excluded (n=22). The final sample size was 128 (age: 51.0±15.2 years, 48% male). LVH was defined by CMR. From a 12-lead ECG, Sokolow–Lyon voltage and product, Cornell voltage and product, Gubner–Ungerleidger voltage and Romhilt–Estes score were evaluated, blinded to the CMR. ECG diagnostic performance was calculated. LVH by CMR was present in 37% and obesity in 51%. Obesity significantly reduced ECG sensitivity, because of significant attenuation in mean ECG values for Cornell voltage (22.2±5.7 vs 26.4±9.4 mm, P<0.05), Cornell product (2540±942 vs 3023±1185 mm • ms, P<0.05) and for Gubner–Ungerleider voltage (18.2±7.1 vs 23.3±1.2 mm, P<0.05). Obesity also significantly reduced ECG specificity, because of significantly higher prevalence of LV remodeling (no LVH but increased mass-to-volume ratio) in obese subjects without LVH (36% vs 16%, P<0.05), which correlated with higher mean ECG LVH criteria values. Obesity-specific partition values were generated at fixed 95% specificity; Cornell voltage had highest sensitivity in non-obese (56%) and Sokolow–Lyon product in obese patients (24%). Obesity significantly lowers ECG sensitivity at detecting LVH, by attenuating ECG LVH values, and lowers ECG specificity through changes associated with LV remodeling. Our obesity-specific ECG partition values could improve the diagnostic performance in obese patients with hypertension

    Spontaneous Dissection of Right Coronary Artery Manifested with Acute Myocardial Infarction

    Get PDF
    Spontaneous coronary artery dissection is a rare cause of acute ischemic coronary events and sudden cardiac death. It usually occurs in young women without traditional risk factors for coronary artery disease during pregnancy or postpartum period. However, it has also been reported in patients with atherosclerotic coronary disease. We present a case of spontaneous right coronary artery dissection in a 48-year male with recent myocardial infarction and previous percutaneous coronary intervention

    Imaging of cardiovascular risk in patients with Turner's syndrome

    Get PDF
    Turner's syndrome is a disorder defined by an absent or structurally abnormal second X chromosome and affects around 1 in 2000 newborn females. The standardised mortality ratio in Turner's syndrome is around three-times higher than in the general female population, mainly as a result of cardiovascular disorders. Most striking is the early age at which Turner's syndrome patients develop the life-threatening complications of cardiovascular disorders compared to the general population. The cardiovascular risk stratification in Turner's syndrome is challenging and imaging is not systematically used. The aim of this article is to review cardiovascular risks in this group of patients and discuss a systematic imaging approach for early identification of cardiovascular disorders in these patients

    Aneurisma aorta toracica post traumatico (con gating cardiaco)

    No full text
    corecore